Graph-based Multi-view Binary Learning for image clustering

نویسندگان

چکیده

Abstract Hashing techniques, also known as binary code learning, have recently attracted increasing attention in large-scale data analysis and storage. Generally, most existing hash clustering methods are single-view ones, which lack complete structure or complementary information from multiple views. For tasks, hashing research mainly mapped the original into Hamming space while heavily ignoring feature structure. To solve these problems, we propose a novel algorithm for clustering, adopts graph embedding to preserve structure, called Graph-based Multi-view Binary Learning (GMBL). The learning combines of different views clustering. Specifically, GMBL preserves local linear relationship utilizing Laplacian matrix aim maintain graph-based space. Moreover, by automatically assigning weights each view improve performance, takes distinctive contributions considerations. Besides, an alternating iterative optimization method is designed resulting problems. Extensive experimental results on five public datasets provided reveal effectiveness its superior performance over other state-of-the-art alternatives.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-view Clustering with Adaptively Learned Graph

Multi-view clustering, which aims to improve the clustering performance by exploring the data’s multiple representations, has become an important research direction. Graph based methods have been widely studied and achieve promising performance for multi-view clustering. However, most existing multi-view graph based methods perform clustering on the fixed input graphs, and the results are depen...

متن کامل

Multi-view Self-Paced Learning for Clustering

Exploiting the information from multiple views can improve clustering accuracy. However, most existing multi-view clustering algorithms are nonconvex and are thus prone to becoming stuck into bad local minima, especially when there are outliers and missing data. To overcome this problem, we present a new multi-view self-paced learning (MSPL) algorithm for clustering, that learns the multi-view ...

متن کامل

Multi-view metric learning for multi-instance image classification

It is critical and meaningful to make image classification since it can help human in image retrieval and recognition, object detection, etc. In this paper, three-sides efforts are made to accomplish the task. First, visual features with bag-of-words representation, not single vector, are extracted to characterize the image. To improve the performance, the idea of multi-view learning is impleme...

متن کامل

Multi-Graph-View Learning for Complicated Object Classification

In this paper, we propose to represent and classify complicated objects. In order to represent the objects, we propose a multi-graph-view model which uses graphs constructed from multiple graph-views to represent an object. In addition, a bag based multi-graph model is further used to relax labeling by only requiring one label for a bag of graphs, which represent one object. In order to learn c...

متن کامل

Large-Scale Multi-View Spectral Clustering via Bipartite Graph

In this paper, we address the problem of large-scale multi-view spectral clustering. In many real-world applications, data can be represented in various heterogeneous features or views. Different views often provide different aspects of information that are complementary to each other. Several previous methods of clustering have demonstrated that better accuracy can be achieved using integrated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2021

ISSN: ['0925-2312', '1872-8286']

DOI: https://doi.org/10.1016/j.neucom.2020.07.132